Poly(ADP-ribose) polymerase contributes to the development of myocardial infarction in diabetic rats and regulates the nuclear translocation of apoptosis-inducing factor.
نویسندگان
چکیده
Activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP)-1 by oxidant-mediated DNA damage is an important pathway of cell dysfunction and tissue injury during myocardial infarction. Because diabetes mellitus can substantially alter cellular signal transduction pathways, we have now investigated whether the PARP pathway also contributes to myocardial ischemia/reperfusion (MI/R) injury in diabetes mellitus in rodents. Myocardial ischemia/reperfusion in control and streptozotocin-diabetic rats was induced by transient ligation of the left anterior descending coronary artery. PARP activation was inhibited by the isoindolinone derivative PARP inhibitor INO-1001. In diabetic rats, a more pronounced degree of myocardial contractile dysfunction developed, which also was associated with a larger infarct size, and significant mortality compared with nondiabetic rats. Inhibition of PARP provided a similar degree of myocardial protective effect in diabetic and nondiabetic animals and reduced infarct size and improved myocardial contractility. In diabetic rats, PARP inhibition reduced mortality during the reperfusion phase. There was marked activation of PARP in the ischemic/reperfused myocardium, which was blocked by INO-1001. In addition, there was a significant degree of mitochondrial-to-nuclear translocation of the cell death effector apoptosis-inducing factor (AIF) in myocardial infarction, which was blocked by pharmacological inhibition of PARP. The role of PARP in regulating AIF translocation in myocytes also was confirmed in an isolated perfused heart preparation. Overall, the current results demonstrate the importance of the PARP pathway in diabetic rats subjected to myocardial infarction and demonstrate the role of PARP in regulating AIF translocation in MI/R.
منابع مشابه
Inhibition of the activity of poly (ADP-ribose) polymerase reduces heart ischaemia/reperfusion injury via suppressing JNK-mediated AIF translocation
Poly (ADP-ribose) polymerase (PARP) has been proposed to play an important role in the pathogenesis of heart ischaemia/reperfusion (I/R) injury. However, the mechanisms of PARP-mediated heart I/R injury in vivo are still not thoroughly understood. Therefore, in this study, we investigate the effect of PARP inhibition on heart I/R injury and try to elucidate the underlying mechanisms. Studies we...
متن کاملMitochondrial-to-nuclear translocation of apoptosis-inducing factor in cardiac myocytes during oxidant stress: potential role of poly(ADP-ribose) polymerase-1.
OBJECTIVE Oxidant stress-induced activation of poly(ADP-ribose) polymerase (PARP) plays a role in the pathogenesis of various cardiovascular diseases. We have now investigated the role of PARP in the death of cardiac myocytes in response to oxidant stress induced by hydrogen peroxide, with focus on the mitochondrial function. METHODS AND RESULTS Using wild-type and PARP-1-deficient murine myo...
متن کاملThe role of poly(ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes.
Patients with diabetes exhibit a high incidence of diabetic cardiomyopathy and vascular complications, which underlie the development of retinopathy, nephropathy, and neuropathy and increase the risk of hypertension, stroke, and myocardial infarction. There is emerging evidence that the activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) importantly contributes to the developmen...
متن کاملIntranasal administration of a PARG inhibitor profoundly decreases ischemic brain injury.
Cumulative evidence has indicated a critical role of poly(ADP-ribose) polymerase-1 activation in ischemic brain damage. Poly(ADP-ribose) glycohydrolase (PARG) is a key enzyme in poly(ADP-ribose) catabolism. Our previous studies showed that PARG inhibitors, gallotannin (GT) and nobotanin B, can profoundly decrease oxidative cell death in vitro. Here, we tested the hypothesis that intranasal deli...
متن کاملInhibiting poly(ADP-ribose) polymerase: a potential therapy against oligodendrocyte death.
Oligodendrocyte loss and demyelination are major pathological hallmarks of multiple sclerosis. In pattern III lesions, inflammation is minor in the early stages, and oligodendrocyte apoptosis prevails, which appears to be mediated at least in part through mitochondrial injury. Here, we demonstrate poly(ADP-ribose) polymerase activation and apoptosis inducing factor nuclear translocation within ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 310 2 شماره
صفحات -
تاریخ انتشار 2004